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ferentiated innate immune cells such as monocytes, macrophages or
natural killer cells. Importantly, these studies have revealed extensive
reprogramming of the epigenome as the basis for innate immunemem-
ory (Novakovic et al., 2016). Epigenetic changes act at the level of chro-
matin: the dynamic complex of DNA and histone proteins that spatially
determines the transcriptional competency of a gene by regulating its
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studies in the field of trained immunity have accordingly focused on dif-

accessibility to the transcriptional machinery of the cell. Posttransla-
tional chemical modification of chromatin components such as histone
N-terminal tails distinguishes and instructs the assembly of open and
closed chromatin structures, thereby influencing gene expression. The
transfer of methyl groups (methylation) to lysine residues of specific
histones by the SET domain of methyltransferase enzymes has emerged
as an important factor enhancing the expression of antimicrobial genes
by innate immune cells (Netea et al., 2016). Recent studies linkingmet-
abolic changes in trained cells with epigenetic reprogramming impli-
cate particular classes of histone modifying enzymes as proponents of
innate immune memory (Arts et al., 2016). However, the identities of
the specific enzymes responsible for the myriad epigenetic changes re-
main elusive.

Torre and colleagues used a planarian experimental infection
with Staphylococcus aureus as a model to study the properties of in-
nate immune memory, with relevance for vertebrate immunity as
well. In this model, infection of planarians with S. aureus changes in-
nate immune responses in an adaptive manner, resulting in an im-
proved rate of pathogen clearance upon subsequent reinfection.
Indeed planarians are renowned for their capacity to fight infection
and remarkable regenerative abilities. In the pursuit of a mechanistic
link between these processes, Torre et al. identified two important
novel mechanisms central to the induction of trained immunity (or
instructed immunity, as defined by the authors). First, the authors
demonstrate the importance of a specific population of pluripotent
stem cells called neoblasts for innate immune memory. Second,
through a series of experiments using RNA interference, the re-
searchers revealed that genes important for innate immunity confer
sustained resistance to S. aureus via a signaling cascade that is con-
tingent on the Smed-setd8–1 lysine methyltransferase.

These observations are significant for understanding responses
during infection and vaccination in humans. One important aspect
for which the study of Torre and colleagues is significant is for pro-
viding important clues on the physiological mechanisms mediating
trained immunity in humans at the level of immune progenitor
cells. The long-term protection conferred by vaccination with
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Bacillus Calmette–Guérin (BCG) far exceeds the lifespan of innate
immune cells in the circulation (Kleinnijenhuis et al., 2012). The ca-
pacity to induce innate immune memory in pluripotent neoblasts in
planarians advocates the possibility that innate immune cell precur-
sors in vertebrates can also mount epigenetic and functional
reprogramming and thus mediate innate immune memory. Indeed,
myeloid cell progenitors have been demonstrated to mediate long-
term TLR2-induced tolerance (Yanez et al., 2013), and a similar role
may be expected for trained immunity.

An important observation is also that Smed-setd8–1 in planarians is
homologous to human SET8 (also known as KMT5A), indicating poten-
tial for a similar regulatory function in vertebrates. Studies exploring
epigenetic changes associated with innate immune memory have fo-
cused predominantly on post-translational modifications of H3 his-
tones. Torre et al. now provide the impetus to expand this search to
the tails of H4 histones, which aremethylated only at lysine 20. Methyl-
ation of H4 histones has previously been associatedwith transcriptional
memory in diabetic rodents (Zhong and Kowluru, 2011), although the
precise regulatory function of this modification remains controversial
(Milite et al. 2016). Importantly the addition of a single methyl group
to H4 histones is associated with transcriptional activation (Barski et
al., 2007), and SET8 is the only enzymeknown towrite thismodification
(Milite et al., 2016).

To conclude, the elegant study by Torre et al. describes a system of
acquired resistance in planarians that shares several important features
with trained immunity in vertebrates. Infectionwith S. aureus initiates a
program of heightened defense against the same pathogen. It remains
to be seen how closely this systemmirrors the broad non-specificmem-
ory of trained immunity. Nevertheless, the central role of neoblasts and
Smed-setd8–1 informs about potential new researchpaths in the search
for epigenetic regulators of innate immune memory in vertebrates.
Identification of these key factors will greatly accelerate the realization
of novel therapeutic approaches to the treatment of infectious and
auto-inflammatory diseases, as well as the improvement of vaccination
programs (Netea et al., 2016).
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